The size of the Planck length can be visualized as follows: if a particle or dot about 0.1mm in size (which is at or near the smallest the unaided human eye can see) were magnified in size to be as large as the observable universe, then inside that universe-sized "dot", the Planck length would be roughly the size of an actual 0.1mm dot, that is, about the size of smallest object the naked human eye can see. In other words, the diameter of the observable universe is to within less than an order of magnitude, larger than a 0.1 millimeter object, roughly at or near the limits of the unaided human eye, by about the same factor (10^31) as that 0.1mm object or dot is larger than the Planck length. More simply - on a logarithmic scale, a dot is halfway between the Planck length and the size of the universe. Sorry for the plunder directly from wikipedia but it was too good to just link to.
Planck length Visualization:
"The size of the Planck length can be visualized as follows: if a particle or dot about 0.1mm in size (which is at or near the smallest the unaided human eye can see) were magnified in size to be as large as the observable universe, then inside that universe-sized "dot", the Planck length would be roughly the size of an actual 0.1mm dot, that is, about the size of smallest object the naked human eye can see. In other words, the diameter of the observable universe is to within less than an order of magnitude, larger than a 0.1 millimeter object, roughly at or near the limits of the unaided human eye, by about the same factor (10^31) as that 0.1mm object or dot is larger than the Planck length. More simply - on a logarithmic scale, a dot is halfway between the Planck length and the size of the universe."